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ABSTRACT Accurate prediction of perceptual attributes of haptic textures is essential for advancing
VR and AR applications and enhancing robotic interaction with physical surfaces. This paper presents a
deep learning-based multi-modal framework, incorporating visual and tactile data, to predict perceptual
texture ratings by leveraging multi-feature inputs. To achieve this, a four-dimensional haptic perceptual
space encompassing rough-smooth, flat-bumpy, sticky-slippery, and hard-soft dimensions is first constructed
through psychophysical experiments, where participants evaluate 50 diverse real-world texture samples.
A physical signal space is subsequently created by collecting visual and tactile data from these textures.
Finally, a deep learning architecture integrating a CNN-based autoencoder for visual feature learning
and a ConvLSTM network for tactile data processing is trained to predict user-assigned attribute ratings.
This multi-modal, multi-feature approach maps physical signals to perceptual ratings, enabling accurate
predictions for unseen textures. To evaluate predictive accuracy, we employed leave-one-out cross-validation
to rigorously assess the model’s reliability and generalizability against several machine learning and deep
learning baselines. Experimental results demonstrate that the framework consistently outperforms single-
modality approaches, achieving lower MAE and RMSE, highlighting the efficacy of combining visual and
tactile modalities.

INDEX TERMS Haptic texture attributes, visuo-tactile learning, deep learning, tactile signal processing,
texture recognition, human haptic perception.

I. INTRODUCTION

When a textured surface is stroked, a range of tactile
signals is generated, playing a crucial role in surface texture
perception. Humans interpret these signals rapidly within a
multi-dimensional haptic perceptual space, characterized by
descriptors such as roughness, softness, and bumpiness [1].
This cognitive process, driven by deformation of the user’s
skin connected to the user’s interactions, enables material
recognition and object identification with remarkable accu-
racy [2], [3]. Computationally modeling this perception is
essential for applications in virtual reality (VR), augmented
reality (AR), haptic-enabled robotics, and human-computer
interaction [4].
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Primary research on haptic textures has focused on
modeling surface interactions and generating realistic haptic
feedback. A number of studies have introduced haptic
texture rendering modules and libraries that synthesize
acceleration signals of specific textures based on physical
interactions [5], [6]. These modules provide a means to
generate haptic feedback for virtual environments. However,
while the synthesis of texture signals has been well studied,
the question of when to use these models effectively remains
largely unexplored. Understanding their applicability is
crucial for improving haptic rendering fidelity, particularly
in scenarios requiring accurate perceptual predictions.

One of the key applications where accurate haptic attribute
prediction is essential is model-mediated teleoperation,
where a remote system captures interaction data, but real-time
transmission of raw haptic signals may be limited due
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to latency. In such cases, a perceptually aligned haptic texture
model can be selected from a texture library [5], ensuring
that the reconstructed feedback on the operator’s side closely
matches the intended material properties, thereby enhancing
realism in remote interactions [7]. These systems utilize a
rigid tool equipped with vision and tactile sensors, where the
vision sensor captures global texture characteristics, such as
macro-scale structure and material reflectance, while the tac-
tile sensor records tool-induced vibrations as high-frequency
acceleration signals, along with scanning speed and applied
force. However, to ensure that the remotely rendered haptic
feedback is perceptually consistent with the original material,
accurate haptic attribute prediction is needed to establish
a reliable mapping between physical signals and human
perception. By leveraging predictive models, the system can
generate an appropriate haptic representation rather than
relying on direct signal transmission that may be affected by
latency or interaction variability [7], [8].

To better conceptualize the idea, two fundamental rep-
resentational spaces are introduced: the perceptual attribute
space and the physical signal space. The perceptual, or hap-
tic, attribute space is constructed through psychophysical
experiments, where participants rate textures along bipolar
attributes such as rough—-smooth and hard-soft, forming a
subjective representation of haptic perception [9], [10].

In contrast, the physical signal space is derived from
measured texture characteristics, including high-resolution
visual data and tactile signals such as acceleration, applied
force, and scanning speed, which collectively encode the
objective physical properties of textures [11], [12]. Establish-
ing a reliable mapping between these spaces is essential for
computational models to predict how a given texture will be
perceived based on its physical attributes.

While humans use both the visual and tactile data to gauge
the haptic texture, most previous studies on the prediction of
haptic texture perceptual attributes rely on single-modality
approaches, using either tactile signals or visual texture anal-
ysis. On one hand, while tactile data provide high accuracy
in capturing micro-textural properties, it is highly sensitive
to interaction parameters, such as force, speed, and sensor
noise, which can introduce inconsistencies in estimation.
On the other hand, visual data possess macro-scale structural
patterns but do not provide compliance-related attributes,
such as softness or friction, which are not always visually
discernible [2], [7]. Visual data also do not have micro-scale
information that greatly influences texture perception, due
to the spatial resolution of the visual sensors. Some studies
have attempted to integrate multi-modal learning, but they
predominantly focus on texture classification rather than
continuous haptic attribute prediction, limiting their ability to
model perceptual variations accurately [7], [11], [13]. Since
vision and tactile data encode complementary information,
a robust multi-modal framework that effectively fuses both
modalities is necessary to improve haptic attribute prediction,
enhance generalizability, and ensure perceptual alignment
with human ratings.

109932

Nonetheless, while various computational techniques have
been explored to map perceptual attributes from physical
signals, challenges remain in achieving robust and general-
izable haptic prediction. Early attempts employed parametric
models but often struggle to generalize across different tex-
tures and interaction conditions [2]. More recent efforts have
leveraged deep learning-based models to learn complex map-
pings between input signals and haptic attributes [14], [15].
These methods have demonstrated notable success, par-
ticularly in capturing intricate texture representations and
improving prediction accuracy. However, many existing deep
learning models are still trained on single-modality data,
which can limit their ability to generalize across diverse
textures. Multi-modal deep learning approaches that integrate
visual and tactile data have shown promising results, with
different fusion strategies being explored to enhance their
effectiveness. One promising direction involves cross-modal
feature fusion, where representations extracted from different
sensory modalities are effectively combined to improve pre-
diction accuracy [7], [11]. Additionally, leveraging features
extracted from pre-trained models and integrating them with
classical handcrafted descriptors provides a robust way to
capture both high-level abstract features and fine-grained
physical properties, further enhancing the reliability of haptic
attribute prediction [15].

Motivated by these challenges, this work introduces a deep
learning framework that integrates visual and tactile data for
predicting perceptual haptic attributes. The framework con-
structs a physical signal space by capturing high-resolution
images and tactile data, including acceleration, applied force,
and scanning speed from 50 real-world textures, while simul-
taneously establishing a four-dimensional perceptual space
through psychophysical experiments, where participants
rate textures along the bipolar attributes of rough-smooth,
flat-bumpy, sticky-slippery, and hard-soft. To facilitate the
analysis of these perceptual ratings, the four-dimensional
space is visualized in a two-dimensional representation,
providing insights into the structure of human haptic
perception. To establish a mapping between these spaces,
the framework employs a two-stream architecture, where the
visual stream extracts texture features using a CNN-based
autoencoder, incorporating pre-trained ResNet-50 [16] fea-
tures alongside Gray-Level Co-occurrence Matrix (GLCM)
descriptors to enhance structural representation. The tactile
stream, implemented as a Convolutional LSTM (ConvLSTM)
network [17], processes high-frequency vibration signals
using Mel-Frequency Cepstral Coefficients (MFCCs), com-
plemented by interaction parameters such as scanning speed
and applied force to improve robustness. By integrating
these complementary modalities, the framework strengthens
feature representation and enhances perceptual alignment,
leading to more accurate haptic attribute predictions.

Beyond applications in teleoperation, haptic attribute
prediction can also serve as a scalable alternative to human
perceptual evaluation. Directly assessing texture properties
through psychophysical experiments is often impractical due
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to time, cost, and logistical constraints, while in certain
cases, such as analyzing hazardous surfaces or conducting
large-scale material perception studies, direct human interac-
tion is infeasible [9], [10]. By leveraging multimodal sensory
data, a predictive model can enable efficient, reproducible,
and scalable estimation of perceptual haptic attributes,
reducing the dependency on resource-intensive human
studies while maintaining perceptual alignment. Another
key application is perception-based data compression and
transmission. Instead of storing and transmitting raw physical
data, perceptual attributes can be estimated from newly
captured signals, encoded with compression, and efficiently
stored or transmitted. This approach can significantly reduce
data storage requirements and transmission bandwidth. Even-
tually, rendering algorithms and haptic devices can convert
perceptual attribute values into appropriate commands or
physical signals tailored to the user’s interaction.

The primary contributions of this work are as follows:

o Development of a dual-stream multi-modal deep learn-
ing framework for haptic attribute prediction, combining
a CNN-based autoencoder for visual feature encoding
with a ConvLSTM network for modeling temporal
tactile signals.

o Collection of a multi-modal texture dataset consisting
of high-resolution images and tactile signals from
50 unique texture surfaces, including acceleration,
applied force, and scanning speed.

o Structuring and visualizing a four-dimensional percep-
tual space using bipolar haptic attributes (rough—smooth,
flat-bumpy, sticky—slippery, and hard—soft) to improve
the interpretability and spatial organization of textures
based on subjective ratings.

« Quantitative evaluation using LOOCV and comparison
against baseline models, demonstrating improved pre-
diction accuracy for each perceptual attribute.

The paper is organized as follows. Section II provides

a review of related work. The proposed method, including
the architecture of the attribute prediction model and its
input-output schema, is introduced in Section III. Section IV
describes the construction of the haptic perceptual space.
The collection and preprocessing of visual-tactile data, which
form the basis of the physical feature space, are outlined in
Section V. Evaluation procedures and results are presented
in Section VI, followed by a discussion of the framework in
Section VII. Finally, Section VIII concludes the study.

Il. RELATED WORKS

Below, we discuss related work on haptic texture attributes
and their organization within perceptual spaces, the use of
tactile and visual data, as well as deep learning approaches
for texture analysis.

A. HAPTIC TEXTURE ATTRIBUTES AND

PERCEPTUAL SPACES

Haptic texture attributes are perceptual qualities humans
associate with surfaces, such as roughness, and slipperiness.
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These attributes can be perceived through bare-finger or
tool-based interaction and form the basis for constructing
haptic perceptual spaces, multidimensional representations
that characterize textures by human perception [18].

One of the pioneering studies on understanding haptic
texture perception was conducted by Yoshidaetal. [19],
focusing on bare-finger interactions. Their research iden-
tified four key perceptual dimensions of texture: hard-
soft, heavy-light, cold-warm, and rough-smooth. Subsequent
work refined these findings, confirming rough—smooth and
hard—soft as dominant bipolar dimensions [20]. Further
expansion introduced macro- and micro-roughness as dis-
tinct perceptual axes and highlighted friction as a critical
attribute [21]. Collectively, these studies contributed to
the widely recognized five perceptual dimensions: micro-
roughness, macro-roughness, friction, stiffness, and warmth.
In contrast, tool-mediated methods, such as those employed
by [22], demonstrated that tapping with a rigid probe
enhances the perception of hardness and softness. Other
studies demonstrated that tool-based interactions reliably
assess the rough—smooth dimension by reducing variability
in skin contact [18], [23]. Despite their effectiveness, tool-
mediated approaches may fail to capture finer details like
friction and micro-roughness. In these cases, bare-finger
interactions provide richer and more nuanced feedback,
which is essential for accurately capturing subtle surface
properties [24].

Haptic attributes derived from user interactions are
commonly used to construct perceptual spaces that char-
acterize the multi-dimensional nature of texture perception.
These spaces are typically generated using techniques like
Multi-Dimensional Scaling (MDS) [18] or Principal Compo-
nent Analysis (PCA) [25], [26], which reduce dimensionality
for easier interpretation. Perceptual spaces play a crucial role
in texture analysis [6], [27] and the development of virtual
textures [28]. While dimensionality reduction simplifies
data, it can overlook important perceptual details and is
unsuitable for estimating actual human-assigned ratings.
In our recent work [15], we introduced a four-dimensional
haptic perceptual space consisting of two 2D subspaces,
preserving raw user ratings without reducing dimensions.
This approach offers a more accurate and detailed rep-
resentation of perceptual attributes, directly reflecting the
degree of user-assigned ratings for each texture dimension.
Despite progress, further research is needed to develop
intuitive representations that incorporate actual user ratings,
enhancing the understanding of haptic perception.

B. TACTILE AND VISION DATA FOR TEXTURE ANALYSIS

Texture analysis through tactile feedback involves cap-
turing the unique vibrations generated when interacting
with surfaces. This feedback reflects both macro features
(e.g., bumpiness) and micro features (e.g., fine rough-
ness) [22], [24]. However, the relationship between tex-
ture properties, user motion, and the resulting vibrations
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is inherently complex and nonlinear, posing significant
challenges for accurate modeling and distinguishing [29].
Early studies recorded tactile data under fixed interaction
parameters or segmented it into stationary signals, limiting
generalizability [7]. Recent approaches have shifted towards
directly utilizing data collected through free-hand motion,
preserving natural interactions and a wider range of vibratory
responses [30] without information loss. However, even
with parametric and deep learning models, distinguishing
similar textures remains difficult due to overlapping vibratory
signals [2], [14], [30].

In contrast, Vision-based techniques offer a simpler alter-
native to tactile sensors, requiring less specialized hardware.
Heravi et al. [31] used GelSight images to classify textures
effectively, though their focus was on texture rendering rather
than precise attribute prediction. Yang et al. [32] aligned
GelSight embeddings with visual and auditory modalities
to improve classification accuracy. Similarly, Luo et al. [33]
employed the ViTac dataset, which combines camera and
GelSight data, to classify cloth textures. The MIT GelSight
dataset [34] has also been widely adopted for high-resolution
surface geometry analysis and fine-grained texture recogni-
tion. Although these methods and datasets support valuable
classification tasks, they do not provide user-rated perceptual
labels, limiting their applicability for modeling subjective
haptic impressions. While, Hassan et al. [15] employed a
feature-based approach using texture images to estimate
haptic attributes, showing strong results but struggling in
predicting attributes like softness and fine roughness. This is
likely because image-based methods primarily capture macro
features (e.g., surface patterns) but often miss sub-surface
features (e.g., material compliance / softness), limiting their
accuracy in similar applications.

These challenges are well-recognized in the haptics
community. To address them, studies have explored inte-
grating visual and tactile features for more robust texture
analysis [25]. Fusing visual data, which captures macro
features, with tactile data, which reflects micro details,
enables a comprehensive representation of textures. This
multi-modal approach improves the prediction of perceptual
attributes, surpassing simple texture classification [12], [35].
By leveraging shared features from both modalities, models
achieve better generalization and accuracy, even for unseen
textures. However, most efforts focus on classification,
with limited research addressing regression for predicting
perceptual haptic attributes [12], [36].

C. DEEP LEARNING APPROACHES FOR TEXTURE
PERCEPTION

Recent studies have increasingly adopted deep learning (DL)
approaches for modeling texture perception from both visual
and tactile data [14], [35]. Convolutional Neural Networks
(CNNs) are commonly used for extracting spatial features
from visual textures, effectively capturing structural and
geometric patterns in images, and have shown significant
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performance in texture recognition tasks [15]. Tactile signals,
in contrast, are inherently spatio-temporal, as they contain
both local surface-related information and dynamic variations
over time. In earlier works, researchers applied CNN-based
models to time-series tactile data, focusing on extracting local
features from vibration signals [12]. With the introduction
of Recurrent Neural Networks (RNNs), particularly Long
Short-Term Memory (LSTM) networks that are specialized
in modeling temporal dependencies, researchers began to
explore CNN-LSTM hybrid architectures. These models
typically combine CNN and LSTM in a stacked or two-
stream configuration, where CNNs are used to extract spatial
features from input segments and LSTMs capture temporal
dynamics across those segments [14]. While this setup
enables joint spatio-temporal learning, it often introduces
challenges including complex optimization, sensitivity to
hyperparameters, and reduced spatial coherence when fea-
tures are temporally sequenced. These limitations are not
exclusive to haptic data and have been widely observed in
other spatio-temporal learning tasks [14], [37], [38].

To address the limitations of existing architectures for
processing time-series data, recent works have explored
several alternatives, with Transformer frameworks [39] and
Convolutional LSTM (ConvLSTM) networks [17] being
among the most prominent. Transformers perform well in
sequential tasks but are constrained by large data needs
and can limit their practicality in texture-based haptic
tasks [40]. ConvLSTM, however, offers a structured approach
for modeling both spatial and temporal dependencies and
has demonstrated effectiveness in a variety of time-series
domains. Notably, Zhang et al. [41] applied ConvLSTM to
tactile sensing through the FingerVision system, enabling slip
detection and object recognition by capturing spatiotemporal
dynamics in tactile signals. These results support the suitabil-
ity of ConvLSTM for haptic perception tasks involving dense
sensor input with temporal variation.

Despite its success in related domains, ConvLSTM
remains unexplored for haptic texture analysis. We hypoth-
esize that it is better suited for learning the underlying
spatial and temporal structure of tactile signals compared to
LSTMs or CNN-LSTM hybrids.For the visual modality in
our multimodal framework, we consider CNNs an effective
choice for extracting spatial features, including local texture
patterns and geometric structures, given their proven ability
to capture these characteristics in texture images.

Il. VISUO-TACTILE NET

The primary objective of this work is to predict haptic
affective attributes from multimodal physical signals using a
structured computational framework. As shown in Figure 1,
the process begins with the preparation of texture samples
obtained from real-world surfaces. Next, we construct two
distinct data spaces: 1) Physical Feature Space (PFS), which
includes multimodal physical signals captured from the
texture samples, and 2) Haptic Perceptual Space (HPS),
which contains user-assigned perceptual attribute ratings
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FIGURE 1. Overall framework.

gathered through psychophysical experiments. The core of
this framework is the Visuo-Tactile Net, which bridges the
gap between physical signals and human perceptual ratings.
Its design is detailed in the remainder of this section, while the
construction of the HPS and PFS is described in Sections IV
and V, respectively.

To facilitate the mapping between physical features
and perceptual attributes, the Visuo-Tactile Net employs
a dual-stream architecture which we also termed as
Visuo-tactile Net (Figure 2) consisting of two parallel
branches: the Haptic Vision Network (HV-Net) and the
Haptic Tactile Network (HT-Net). Both networks operate
on pre-extracted features rather than raw data to improve
robustness and mitigate overfitting (see Sections V and IV).
HV-Net encodes visual information from texture images,
while HT-Net models temporal patterns in tactile signals.
Finally, the dual-stream architecture fuses visual and tactile
features from HV-Net and HT-Net to create a robust joint
representation of physical texture, which is then used to
predict haptic attributes. The following subsections describe
the design of each stream and the associated training
methodology.

A. HAPTIC VISION NETWORK (HV-NET)
The HV-Net generates compact and discriminative represen-
tations from visual texture inputs by integrating deep and
statistical features. The input to HV-Net combines high-
level descriptors extracted using a pretrained ResNet-50
model [16] with handcrafted texture descriptors derived from
the Gray-Level Co-occurrence Matrix (GLCM). A detailed
description of these visual feature extractions is provided in
Sec. V-B.

To process this high-dimensional input while mitigat-
ing overfitting and preserving relevant structure, HV-Net
employs a convolutional autoencoder (CNN-AE) built on
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1D convolutional layers. The use of 1D-CNNs, instead of
2D-CNNs, is motivated by the nature of the input, which
is a flattened feature vector without spatial dimensions.
This choice significantly reduces the number of trainable
parameters, improves generalization, and allows the model
to capture local patterns efficiently. The encoder consists of
sequential 1D-CNN layers with filter sizes of 256, 256, 128,
64, and 32, and kernel sizes of (1 x 4),(1 x 4), (1 x 3),
(1 x 3), and (1 x 3), respectively. Each convolutional layer
is followed by a max pooling operation with a pooling
size of (1 x 2) to reduce temporal resolution and improve
robustness. The decoder mirrors this structure in reverse
order, applying 1D-CNN layers with filter sizes of 32,
64, 128, 256, and 256 to reconstruct the original input
feature vector. This self-supervised reconstruction allows the
network to learn stable and discriminative visual features by
suppressing irrelevant variations while retaining meaningful
texture structure.

The output of the decoder is passed through two fully
connected layers with 512 and 128 units, respectively, each
followed by a ReLU activation. This projection compresses
the learned representation into a compact 128-dimensional
visual feature vector, which is later combined with the tactile
features from HT-Net during the multimodal fusion stage.

B. HAPTIC TACTILE NETWORK (HT-NET)

During surface exploration, stroking motions involve
user-controlled interaction parameters such as scanning
speed (v) and applied force (f), which determine how the
surface is explored. These interactions produce vibrations
that reflect surface properties including microstructure,
roughness, and friction. The resulting dynamic responses
are captured through acceleration signals (a), which contain
high-frequency components induced by contact with the
surface. Acceleration signals are often affected by sensor
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FIGURE 2. The proposed Visuo-Tactile Net. It consists of two streams: one for visual data employing an autoencoder and another for tactile data

utilizing a 1D CNN.

noise and variability in hand motion, particularly under
unconstrained conditions. To improve robustness, HT-Net
operates on extracted features rather than raw signals.
The continuous tactile recordings are first segmented into
overlapping temporal windows, with each segment treated
as a single input instance. For the acceleration signal, Mel-
Frequency Cepstral Coefficients (MFCCs) are computed
to capture spectral content in a compact, noise-resilient
form. In contrast, scanning speed and applied force are
low-frequency signals that exhibit limited variation within
short intervals. Therefore, statistical descriptors are computed
from the speed and force signals to summarize their
temporal behavior across each segment. The complete feature
extraction process is described in Sec. V-A.

For each temporal segment, a feature vector is defined as

X; = (IMFCC,, statistical(v), statistical(f)),

where MFCC, denotes cepstral features extracted from
a, and statistical(v) and statistical(f) represent statistical
descriptors computed separately from v and f. Each
segment-level vector X; forms one input in the sequence
provided to the ConvLSTM. The MFCC features extracted
from acceleration are concatenated with the statistical
descriptors of scanning speed and applied force to form
a unified feature vector per temporal segment. This fused
vector serves as one time step in the sequence input to
the HT-Net.

HT-Net uses a ConvLSTM-based architecture to effectively
capture both local spatial structure and long-range temporal
dependencies present in sequential tactile signals. Con-
vLSTM combines convolutional operations with recurrent
memory, making it particularly suitable for spatio-temporal
modeling of tactile data [17]. The network comprises six
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stacked 1D-ConvLSTM layers with filter sizes of 128, 256,
128, 128, 256, and 128, respectively. To reduce temporal
resolution and enhance representational efficiency, temporal
max pooling operations with a window size of 1 x 2 are
applied after the 2nd, 4th, and 5th ConvLSTM layers. This
layer-wise architecture enables HT-Net to extract hierarchical
tactile representations while progressively compressing the
temporal dimension. The final hidden state output forms
a compact 128-dimensional tactile representation, which is
later fused with the visual stream for joint haptic attribute
prediction. Each ConvLSTM layer follows the original
formulation introduced in [17] and is implemented using
TensorFlow Keras [42].

C. OUTPUT AND TRAINING METHOD

The final visual and tactile representations from HV-Net
and HT-Net, each 128-dimensional, are concatenated to
form a 256-dimensional multimodal feature vector. This
vector passes through two fully connected (FC) layers with
128 units, followed by a max pooling layer with a window
size of 1 x 2. The pooled output is processed by an FC layer
with 32 units and a final FC layer with 4 output neurons,
which predict the haptic attribute scores.

The configuration of the overall architecture, including
the number of layers, filter sizes, and fully connected
dimensions, was determined through extensive empirical
experiments. The network is trained end-to-end using the
TensorFlow-Keras framework with the Adam optimizer and
RMSE loss. ReLU activation is used in all intermediate
layers, while the final output layer employs linear activation
to support continuous regression. Training is performed for
up to 200 epochs, with early stopping based on validation
performance and a patience of 10 epochs.
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IV. HAPTIC PERCEPTUAL SPACE (HPS)

This section briefly describes the process of creating the
proposed Haptic Perceptual Space (HPS) using human par-
ticipants. The first step involves conducting a psychophysical
experiment to identify texture attributes that characterize
perceptual properties. In the second part of the experiment,
participants rated the texture attributes identified in the
prior phase. It is noted that the attribute rating dataset
and experimental setup used for perceptual evaluation were
adopted from our previous study [15], while the visual and
tactile dataset described in Section V was newly collected
in this work. In addition, the current study introduces a
novel structuring and visualization of the perceptual ratings
in a four-dimensional attribute space to reveal the spatial
distribution of textures based on actual user ratings.

A. TEXTURE DATASET

This study utilizes 50 real texture samples from diverse cate-
gories to construct both the Haptic Perceptual Space (HPS)
and the Physical Signal Space (PSS). The textures were
carefully selected to represent a broad spectrum of materials
and surface properties. To ensure comprehensive coverage,
the dataset was categorized into 16 distinct classes. Each
class contains textures exhibiting various characteristics,
including differences in roughness, softness, slipperiness, and
other tactile properties. The texture categories include wood,
rubber, paper, hardboard, sandpaper, fabric, jeans, towels,
carpet, foam, plastic, meshes, aluminum, and synthetic
materials. A detailed overview of the 50 texture samples is
presented in Figure 3.

Furthermore, all the texture samples were cut to 100 x
100 mm for standardization. They were then affixed to
pre-prepared hard acrylic plates of the same dimensions. The
acrylic plates, measuring 100 x 100 x5 mm, ensured uniform
surface elevation across all samples. Liquid surface glue was
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used to attach the textures securely. This mounting process
was implemented to ensure uniform surface elevation across
all samples and to prevent any unevenness or curling of the
texture during the experiments [14], [15].

B. EXPERIMENT 1: ATTRIBUTE SELECTION

The initial phase of this psychophysical study focused on
identifying key adjectives that describe human perception of
surface textures upon interaction. For this study, we gathered
60 haptic texture-related attributes/adjectives that can repre-
sent the dataset. A total of three sources were used to gather
these adjectives: literature [1], [3], domain knowledge, and
user experiments. The full list of adjectives used during the
experiment is shown in Table 1.

TABLE 1. Attributes presented to participants for the attribute selection
experiment. The four selected attribute pairs, highlighted in bold dark
blue, were subsequently used for the rating experiment.

Refined Jarred Bald Mushy Flat Vague
Furry Grating Silky Warm Thick Smooth
Hard Bouncy Pleasant Glassy Pointy Blur
Sticky Sharp Dense Angular | Hatched Even
Jagged Spongy Bumpy Cold Slow Dark
Grainy Patterned | Slippery Light Slick Granular

Distinct | Irritating | Wooden Mild Bright Rough

Prickly Metallic Bubbly Deep Fast Heavy
Solid Fine Blur Shallow Rigid Soft
Glassy Thin Hatched Sparse Blunt Fizzy

1) PARTICIPANTS

A total of 26 participants (19 male and 7 female) took
part in this study, with ages ranging from 25 to 34 and an
average age of 28. All participants were right-handed, used
their dominant hand during the experiment, and reported no
disabilities that might impact their performance or require
special accommodations.
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FIGURE 4. (a) The perceptual experiment setup. (b) The GUI for adjective ratings experiment. (c) Four-dimensional haptic perceptual space visualized as
a 2D bubble plot. The plot shows ratings from four adjective pairs for each texture: hard-soft (x-axis), flat-bumpy (y-axis), rough-smooth (bubble size),
and sticky-slippery (color gradient). Ratings range from -100 to 100, with -100 representing one extreme (e.g., hard) and 100 the opposite (e.g., soft).

2) EXPERIMENT SETUP

The experimental setup is illustrated in Figure 4. Participants
were seated at a table, wearing headphones that emitted white
noise to minimize environmental distractions. A cardboard
box with two openings was placed on the table. One opening
featured a small aperture through which participants could
insert their hand to explore the textures, effectively blocking
visual input during the task. The second opening allowed the
experimenter to interchange the textures without revealing
them to the participant. Participants received instructions in
both written and verbal form, detailing the task of selecting
adjectives to describe the perceived textures.

3) STIMULI AND PROCEDURE

The primary objective of this experiment is to identify
adjectives that characterize the perception of texture. Each
participant was presented with 50 texture samples (see
Fig. 3), one at a time, and allowed to explore them freely
through touch without time constraints, using any preferred
exploratory movements. Participants evaluated each texture
individually and selected adjectives from the provided list
(see Table 1) that they considered relevant. Their decisions
were recorded in binary form: ““1”” for relevant adjectives and
“0” for irrelevant ones.

4) RESULTS

The analysis revealed key attributes that consistently
described the texture surfaces. The scores assigned to each
adjective across all textures and participants were summed
and normalized to generate a relevance score. Adjectives with
relevance scores of 50% or higher were retained for further
analysis, yielding a selection of 11 adjectives. From this
set, antonymous pairs were identified to represent opposing
ends of perceptual dimensions. Adjectives without corre-
sponding antonyms were excluded. The final set consisted of
four antonymous pairs: rough—smooth, flat-bumpy, sticky—
slippery, and hard—soft.These pairs were used in the next
phase of the experiment.
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C. EXPERIMENT 2: ADJECTIVE RATINGS

1) EXPERIMENT SETUP

In the second phase, participants rated each texture using
antonymous attribute pairs identified in the first experiment.
The ratings were recorded through a custom-designed user
interface displayed on a PC (see Fig. 4). This interface
featured four sliders, each representing one of the antony-
mous pairs. The physical length of each slider was 127 mm,
following the standardized method [43]. This design ensured
sufficient resolution for participants to express subtle percep-
tual differences, enhancing the precision of data collection
in perceptual scaling experiments while maintaining ease of
use [43], [44]. Participants explored each texture with their
dominant hand, taking as much time as needed to reach a
confident assessment. Slider values ranged from 0 to 100,
with each slider representing a scale between two opposing
attributes displayed at either end, while the numerical values
remained hidden from participants.

2) RESULTS

The responses from all participants were aggregated to
derive the final perceptual ratings for each texture. For
enhanced analysis and visualization, these ratings were
averaged and mapped onto a scale ranging from -100 to 100,
with O representing the midpoint. On this scale, -100 and
100 correspond to the extremes of each attribute (e.g., rough
to smooth), with polarity indicating the shift toward opposing
haptic properties.

The final outcome of this study is the average rating
for each attribute corresponding to each texture, which
will be used to map physical signal space to perceptual
space, as described in Section III. To visualize this four-
dimensional dataset, we developed a haptic perceptual space
(HPS) using a bubble chart with a color gradient. The
HPS encodes four dimensions: hard-soft (x-axis), flat-bumpy
(y-axis), rough-smooth (bubble size), and sticky-slippery
(color gradient). The HPS plot is illustrated in Fig. 4. To the
best of our knowledge, this HPS is the first visualization
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FIGURE 5. Data recording setup. The setup records vibrations produced
when the user rubs the surface, along with the applied speed and force.

to consolidate multi-dimensional haptic attributes into a
unified 2D framework to display absolute ratings. Unlike
previous studies that required multiple graphs to represent
each dimension separately [15], this approach integrates all
sensory dimensions within a single plot, streamlining the
interpretation of texture properties and enabling efficient
analysis of large datasets.

V. PHYSICAL FEATURE SPACE (PFS)

This section defines the Physical Feature Space (PFS),
a dataset composed of synchronized tactile signals and
visual observations. The first part describes the tactile data,
including the hardware configuration, signal acquisition,
preprocessing, and feature computation. The second part
outlines the visual data, covering image capture and the
extraction of both deep and classical texture descriptors.

A. TACTILE DATASET

1) APPARATUS

The tactile data acquisition setup is illustrated in Figure 5.
It consists of a rigid tool equipped with a detachable
2.0 mm hemispherical stainless steel tip. The tool body is
custom-designed and fabricated using ABS plastic. A 3-axis
accelerometer (ADXL335, Analog Devices) is mounted on
the tool to record vibrations during surface exploration,
while a force sensor (Nanol7, ATI Industrial Automation)
measures forces along three axes. The tool is mounted on a
Phantom Premium haptic device, enabling precise tracking
of position and orientation for accurate speed at 1 kHz
and normal force estimation. The accelerometer connects
to a PC via a data acquisition card (USB-6351, National
Instruments), recording at 3 kHz. The force sensor uses a
dedicated DAQ system to sample forces at 8 kHz. This
hardware configuration is consistent with setups commonly
used in haptic research for texture data collection and offers
high-resolution measurements suitable for tactile signal
analysis [45].

2) DATA COLLECTION AND PRE-PROCESSING

Interaction data was collected for all 50 textures detailed
in Sec. IV-A. Each texture was recorded for 60 seconds
using freehand motion to capture natural surface interactions.
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FIGURE 6. Acceleration signals for artificial grass recorded along three
axes (first three plots) and combined into a single-axis using the DFT321
algorithm (fourth plot), retaining temporal characteristics and spectral
power (fifth plot).

All recorded data was resampled at 1000 Hz for unifor-
mity. The initial and final 2.5 seconds were cropped to
reduce artifacts and eliminate stationary effects. Interaction
signals, including scanning speed and normal force, were
low-pass filtered at 25 Hz to suppress high-frequency
noise, while acceleration signals were band-pass filtered
between 20 Hz and 500 Hz to isolate relevant vibrations
and remove gravitational components [6], [45]. The 3-
axis acceleration signals were projected onto a single
axis using the DFT321 algorithm, preserving temporal and
spectral characteristics [46]. Scanning speed was derived by
combining velocities along all three axes, and normal force
was computed by projecting 3-axis force vectors onto the
surface normal. Figure 6 shows the final processed data for
artificial grass texture (T50).

3) MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)
Physical acceleration signals collected from textured surfaces
contain valuable haptic information alongside redundant
data. To extract meaningful haptic features from these signals,
we apply Mel Frequency Cepstral Coefficients (MFCC),
a technique widely used in audio and signal processing [47].
MEFCC effectively captures essential vibrational patterns from
texture data, making it well-suited for haptic analysis. It has
been successfully applied to surface classification and texture
modeling [28], [29].

To compute MFCCs, the raw acceleration signals were
segmented using a sliding window approach with 50%
overlap, which effectively increases the number of training
samples available to the model while preserving temporal
dynamics. Specifically, 0.5-second segments (500 samples
at 1000 Hz) were extracted using a Hann window, with each
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FIGURE 7. The processed acceleration signal along with interaction
signals, including speed and force. Each graph also shows the segments
created during pre-processing.

segment overlapping the previous one by 250 samples (see
Figure 7). Each segment was further divided into 25 ms
frames with 50% internal overlap, resulting in 40 frames
per segment. For each frame, 13 MFCC coefficients were
extracted, producing a matrix of size 40 x 13. Flattening this
matrix yielded 520 MFCC features per segment.

On the other hand, speed and force signals are
low-frequency and exhibit minimal variation over short
intervals; their minimum, maximum, and average values
were computed for each segment, contributing 6 additional
features. The final feature vector, comprising 526 features
per segment, was computed using Python’s SciPy and librosa
libraries. Each segment’s features serve as input to the
tactile network (HT-Net). An illustration of the segmented
acceleration, speed, and force signals for Artificial Grass
surface (T50) is shown in Figure 7.

B. IMAGE DATASET

The proposed multi-modal strategy incorporates texture
images to extract visual features for predicting haptic
ratings. Traditionally, haptic applications have used raw
images with classical texture descriptors like Gray-Level Co-
occurrence Matrix (GLCM), Gabor filters, and Local Binary
Patterns (LBP) [12]. Recently, pre-trained deep learning
models have become popular for visual feature extraction
in texture analysis and tactile perception [35]. Despite their
effectiveness, deep learning models can miss surface details
when target textures differ from those in the training datasets.
To mitigate this, we adopted a hybrid approach combining
classical and deep learning-based feature extraction. GLCM,
a robust texture descriptor, was used alongside features from
a pre-trained deep learning model.

1) IMAGE CAPTURING SETUP

Learning haptic properties from images requires capturing
fine surface details and granularity. To achieve this, high-
resolution images are essential. We developed a setup
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using a dp2 Quattro SIGMA camera mounted on a tripod,
maintaining a fixed distance of 30 cm between the camera
lens and the surface. For each of the 50 textures, 10 images
were captured under varying lighting and angular conditions
to enhance feature diversity and generalization. To minimize
boundary blur, all images were cropped and resized to 1568 X
1568 from the center.

2) DL-BASED FEATURES

ResNet [16], known for its deep architecture and residual
connections, has demonstrated significant performance in
image classification and feature extraction tasks. Its ability
to capture fine-grained details makes it well-suited for
applications requiring dense visual representations, including
haptic texture analysis [35].

In this study, we employed ResNet-50 [16], pre-trained on
ImageNet, to extract feature vectors, a method validated in
prior haptic research [15], [35]. To maintain the resolution
of texture images and avoid loss of detail, each image was
divided into 49 overlapping 224 x 224 patches, matching
ResNet’s input size. For each patch, feature vectors of size
1 x 2048 were extracted from the average pooling layer.
These vectors were averaged across all patches to generate
the final feature representation for each image. Notably,
since texture perception is less dependent on color, all
images were converted to grayscale. To ensure compatibility
with ResNet’s three-channel input, grayscale images were
replicated across three channels, allowing seamless use of the
pre-trained model without modifying its architecture.

3) CLASSICAL TEXTURE DESCRIPTORS

For classical texture analysis, we employed the Gray-Level
Co-occurrence Matrix (GLCM) [48], a widely used method
for capturing spatial relationships between pixel intensities.
GLCM has also been extensively applied in texture analysis
and has shown significant success in haptic studies for
characterizing surface properties [15]. In this study, the
GLCM was computed on surface texture images quantized
to 16 gray levels, resulting in a 16 x 16 matrix. This
matrix was then flattened to generate a feature vector of
size 1 x 256.

In the final stage, the extracted GLCM features were
combined with deep learning (DL)-based features obtained
from ResNet-50. The 2048-dimensional feature vectors were
extracted from the average pooling layer of ResNet-50
and concatenated with the GLCM features, resulting in a
comprehensive image-based feature vector of size 1 x 2304.
This combined feature vector served as the input to the
Haptic Vision Network (HV-Net) for further processing.
It is noted that, to improve generalization and better align
the visual input space with the temporal tactile segments,
visual samples were dynamically augmented during training
using TensorFlow’s data pipeline. The augmentation process
included random rotations, horizontal and vertical flips,
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and Gaussian noise, thereby enriching visual diversity across
input conditions.

VI. EVALUATION EXPERIMENTS

The primary objective of this experiment is to evaluate
the effectiveness of the proposed approach in estimating
perceptual attributes of textured surfaces. The following
sections outline the error metrics, the leave-one-out cross-
validation (LOOCYV) technique for unseen data, and the
results obtained. The framework is compared with existing
methods, followed by an analysis of different feature sets.

A. ERROR METRICS

To evaluate the performance of the proposed framework,
we employed Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) as the primary error metrics. MAE
quantifies the average magnitude of errors, while RMSE
penalizes larger deviations, providing a comprehensive
measure of prediction accuracy. These metrics were used
to assess the model’s effectiveness in estimating individual
haptic attribute estimation accuracy by comparing predicted
values with user-provided ratings. The attributes evaluated
are the same as those discussed in Sec. IV, including Rough-
smooth (R-S), Flat-bumpy (F-B), Sticky-slippery (S-S), and
Hard-soft (H-S). These metrics are widely used in related
studies [14], [15] and are defined as follows:

1 < 3
MAE =~ 3 Iy; = i, M

i=1

RMSE =

1 « 3
= i @)
n i=1

where y; represents the actual rating provided by the user for
the i texture sample, 7; denotes the estimated attribute rating,
and n is the total number of observations or texture samples.
It is important to note that the actual and predicted values are
scaled to the range of O to 100 before computing the error.
For example, an MAE of 10 represents an average deviation
of 10 on a 100-point scale, reflecting the difference between
predicted and actual user ratings.

B. LEAVE-ONE-OUT CROSS VALIDATION (LOOCV)

Fitting high-dimensional data requires robust validation
techniques to identify the most optimized models and ensure
reliable performance across different methods. One of the
most widely used validation approaches is cross-validation,
which evaluates a model’s ability to generalize by repeatedly
training and testing it on different subsets of data [49]. Among
the various types of cross-validation, k-fold cross-validation
is the most common. In this approach, the dataset is divided
into k equally sized subsets (typically k = 5 or k = 10).
During each iteration, one subset is held out for validation,
while the remaining k — 1 subsets are used for training.
This process repeats k times, with each subset serving as
the validation set once. The model’s final performance is
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averaged across all iterations. However, choosing a small &
(such as 5 or 10) can sometimes lead to high bias and
underfitting, particularly when dealing with small datasets.
To address this, leave-one-out cross-validation (LOOCYV),
a special case of k-fold cross-validation where k = n (the
total number of observations), is often employed. In LOOCYV,
the data is split into n subsets, where each iteration uses a
single data point for validation while the remaining n — 1
points are used for training. This process repeats for every
observation, ensuring that each data point is tested exactly
once, which significantly reduces bias and leverages the
entire dataset for model training [49], [50], [51].

In this work, we utilized LOOCV to evaluate the per-
formance of the proposed framework. Our dataset consists
of 50 textures (n = 50). For each iteration, 49 textures
(n — 1) were used for training, while the remaining texture
was reserved for validation. This resulted in 50 training
cycles, providing a comprehensive assessment of the model’s
generalizability. Despite being computationally demanding,
LOOCYV is particularly valuable for small datasets, as it
maximizes the use of available data and yields reliable
performance estimates on unseen samples. This makes it an
ideal choice for our evaluation process.

C. MODEL PERFORMANCE

Figure 8 presents the comparison between actual and
predicted values from the proposed visuo-tactile Net for each
texture. The results are plotted within a range of -100 to
100 for each surface. As shown, the model’s predictions align
closely with user ratings for most textures.

To further assess accuracy, we calculated MAE across all
attributes. The lowest error of 4.48 was recorded for the
F-B attribute, followed by H-S and R-S with 5.21 and 5.23,
respectively. The highest error of 6.67 was observed for the
S-S attribute, as shown in Table 2. All MAE values are scaled
from 0 to 100, as described in Sec. VI-A, ensuring consistent
interpretation across different attributes. Additionally, class-
based errors are visualized in Figure 9. The results show
that paper and jeans textures exhibited the highest errors,
whereas other texture classes achieved stronger predictive
performance. Further details are provided in Sec. VII.

D. COMPARISON WITH BASELINE MODELS

The performance of the proposed framework was evaluated
against other similar strategies for estimating haptic texture
attribute ratings using either visual and/or tactile data. These
include TactResNet [52], Haptic CNN [15], Tactile CNN-
LSTM [14], Tactile SVM [53], and a multimodal artificial
neural network (ANN) baseline. All models were imple-
mented using TensorFlow 2.7, and their core architectures
were reproduced based on the original publications. For
consistency, the final regression layer of each model was
modified to produce four continuous outputs corresponding
to the four haptic attributes. The ANN baseline provides
a simplified multimodal fusion benchmark without explicit
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FIGURE 8. Comparison of actual and predicted attributes for 50 textures using the Leave-One-Out Cross-Validation (LOOCV) technique.

TABLE 2. Mean Absolute Error (MAE) values for the proposed system and
five algorithms across four attribute pairs.

Methods R-S F-B S-S H-S

Artificial Neural Network ~ 21.13  26.12  22.85 25.44

TactResNet [52] 1578 1583 17.21 1654
Haptic CNN [15] 13.17  11.32  12.01 8.38
Tactile CNN-LSTM [14] 10.58  8.98 13.76  11.92
Tactile SVM [53] 940 1489 1535 1054
Proposed Method 5.23 4.48 6.67 5.21

modeling of spatial or temporal structure. It uses the same
extracted features as the proposed framework: flattened
ResNet and GLCM features for vision, and MFCC with
statistical descriptors for tactile input. These are passed
through two parallel fully connected branches (layer sizes:
128, 256, 256, 128), followed by feature fusion and two
regression layers of 64 units. A final dense layer outputs
four predicted values. This setup allows examination of
the benefits introduced by modality-specific and structured
processing.

The results, shown in Table 2 for MAE and Table 3
for RMSE, demonstrate that the proposed method con-
sistently outperforms baseline models across all attribute
pairs. The proposed model achieved the lowest errors in
both MAE and RMSE, reflecting its superior accuracy
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and generalizability. For MAE, the proposed method
recorded values of 5.23 for R-S, 4.48 for F-B, 6.67
for S-S, and 5.21 for H-S. In contrast, the ANN exhib-
ited significantly higher errors, with 21.13 for R-S and
25.44 for H-S. Similar trends were observed in RMSE,
where the proposed model achieved the lowest errors at
6.81 (R-S), 5.67 (F-B), 7.52 (S-S), and 6.13 (H-S). The ANN,
by comparison, yielded RMSE values of 24.41 (R-S) and
29.12 (H-S).

Among the baseline models, Tactile SVM [53] and
CNN-LSTM [14] outperformed ANN but remained less
accurate than the proposed method. For the F-B attribute, the
proposed model achieved a lower MAE of 4.48 compared
to 15.83 from TactResNet [52]. A similar trend appeared
in RMSE, where [52] produced an error of 21.42, while
the proposed method achieved a significantly lower RMSE
of 5.67. Interestingly, vision-based models [15] and [52]
consistently produced higher errors compared to tactile-based
approaches, highlighting the advantage of tactile data for
haptic attribute estimation and the strength of the proposed
visuo-tactile multi-model based technique in outperforming
vision-based or tactile-based approaches.

E. INDIVIDUAL FEATURE ERROR

In this section, we evaluate the performance of individual
feature extraction techniques for both visual and tactile data,
as well as the benefits of combining them. The goal is to
identify which features contribute most to reducing errors in
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TABLE 3. Root mean square error (RMSE) values for the proposed system
and five algorithms across four attribute pairs.

Methods R-S F-B S-S H-S

Artificial Neural Network — 24.41 31.62 2573 32.19

TactResNet [52] 17.33 2142  20.15 19.36
Haptic CNN [15] 18.21 12.15 14.19  12.65
Tactile CNN-LSTM [14] 1345 10.65 1520 13.78
Tactile SVM [53] 1126 1637 20.81 11.93
Proposed Method 6.81 5.67 7.52 6.13
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FIGURE 9. Heatmap of MAE for four haptic attribute pairs across various
texture classes. Darker shades indicate higher errors, while lighter shades
show lower errors, reflecting prediction performance across different
texture classes using the visuo-tactile Net.

haptic attribute estimation. We assess features from ResNet-
50 and GLCM for vision [15], [30], and 1D Discrete Wavelet
Transform (1D-DWT), Discrete Fourier Transform (DFT),
and MFCC for tactile data. These features were selected
based on their effectiveness in haptic contexts [12], [31], [54].

Table 4 presents the performance of individual and
combined features across both visual and tactile modalities.
For vision-based inputs, concatenating ResNet and GLCM
features led to improved accuracy across all attributes.
The combined visual features achieved an RMSE of 10.11
for R-S, outperforming ResNet (18.29) and GLCM (19.11)
individually. Similar improvements were observed for F-B
and S-S. On the tactile side, MFCC consistently out-
performed 1D-DWT and DFT, achieving an RMSE of
9.89 for R-S compared to 31.3 and 34.61, respectively.
Notably, due to the poor performance of DWT and DFT,
their combination with MFCC was not pursued, as initial
trials led to unstable results and degraded performance.
Combining visual and tactile features further reduced errors,
resulting in the lowest RMSE across most attributes.
The proposed model, integrating ResNet, GLCM, and
MEFCC, achieved RMSE values of 6.81 for R-S and 5.67
for F-B. Tactile data alone (MFCC, 11.35) also outperformed
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TABLE 4. RMSE of individual features compared to concatenated
features.

Feature Type Feature R-S F-B S-S H-S

Vision ResNet 18.29 1652 1536 13.50

GLCM 19.11 1253 10.14 14.96

Concatenated 1326  10.11  12.52 8.6

Tactile ID-DWT 31.3 46.8 425 39.3

DFT 3461 29.85 2651 2841

MFCC 9.89 11.35  10.71 7.98

Proposed ResNet+GLCM 6.81 5.67 7.52 6.13
Method MFCC

vision-only features for F-B, emphasizing the importance
of tactile input for certain perceptual dimensions. Over-
all, the findings demonstrate the effectiveness of multi-
feature, multimodal fusion in improving haptic attribute
prediction.

VIIi. DISCUSSION

Building on the findings presented in Figure 8 and
Table 2, this section examines attribute-wise prediction
trends, modality-specific behavior, and class-level error
patterns to better understand the strengths and limitations
of the proposed framework. Among the four attribute pairs,
S-S exhibited the highest error, while F-B achieved the
lowest, as reflected by the average MAE and RMSE. R-S and
H-S showed moderate errors, performing better than S-S but
not as accurately as F-B.

Notably, considering the effect of visual and tactile
features, we found that each modality has its strengths,
and their combination yields superior results. As shown
in Table 4, the vision-based approach performed better
in capturing the flat-bumpy (F-B) attribute compared to
the tactile-based approach. This may be due to the visual
features’ ability to clearly detect surface patterns, while
tactile signals, particularly acceleration data, may intro-
duce noise during deep strokes, resulting in undesired
bounciness.

Figure 9 highlights performance variations across texture
classes, with paper and jeans categories exhibiting the highest
errors across most attribute pairs. For paper textures, the
highest MAE was recorded for H-S at 10.87 and R-S at 9.57,
likely due to the diverse range of samples, including both
plain and heavily textured surfaces. Since the model maps
the physical signal space to a perceptual space derived from
human ratings, it is plausible that participants may have over-
looked finer details. Perceptual biases driven by preconceived
judgments, as noted in [24], could have influenced ratings,
where participants assess haptic qualities based on prior expe-
riences rather than the actual textures presented during the
experiment. A similar pattern emerged in the jeans category,
particularly for T27 (smooth jeans), where surface texture
variations likely contributed to increased errors, reflecting
challenges akin to those encountered with paper textures.

109943



IEEE Access

M. 1. Awan, S. Jeon: Estimating Perceptual Attributes of Haptic Textures Using Visuo-Tactile Data

Additionally, the meshes class showed elevated errors in
the S-S attribute (MAE 10.31), which may be attributed to
noise artifacts accumulating during tactile data recording.
The rigid and structured nature of hard plastic and metal
meshes could have introduced inconsistencies, resulting in
higher prediction errors. Despite these discrepancies, the
errors remain within acceptable bounds, aligning with the
Just Noticeable Difference (JND) threshold for perceptual
similarity, often estimated at around 10 out of 100 [38].
Most class-wise and overall average MAE values fall below
this threshold, reinforcing the effectiveness of the proposed
framework.

The generalizability of the model is further demon-
strated by its performance on unique textures such as
aluminum (T46), which exhibits distinct surface properties.
Despite its uniqueness, aluminum performed well, with the
highest error recorded in the sticky-slippery (S-S) attribute at
7.98. This elevated error may be attributed to rubbing marks
left by the interaction tool, a known phenomenon in tactile
studies. Since aluminum is the sole sample in its category,
further investigation is necessary to better understand this
behavior. We believe that incorporating additional textures
with similar properties will enhance overall performance.
However, it can be argued that the study has yet to encounter
a sufficiently diverse range of textures. Expanding the dataset
with additional textures is likely to improve texture attribute
prediction quality. Although LOOCYV can introduce biases in
certain cases, it remains an effective method for comprehen-
sive evaluation. The results clearly indicate that the proposed
autoencoder-based framework, combined with CNN and
feature-based inputs, captures nuanced surface properties
and represents an improvement over existing single-modality
approaches.

VIil. CONCLUSION

This study introduces a deep learning visuo-tactile frame-
work for predicting haptic texture attributes. It maps a
physical signal space, constructed from visual and tactile
features, to a perceptual space defined by user ratings. The
four-dimensional perceptual space includes the bipolar pairs:
rough—smooth, flat—-bumpy, hard—soft, and sticky—slippery.
The architecture combines a CNN-based autoencoder for
visual processing with a ConvLSTM network for modeling
tactile signal dynamics. Visual inputs are encoded using fea-
tures from ResNet and GLCM, while tactile signals are rep-
resented using MFCCs derived from high-frequency acceler-
ation data. The framework demonstrates improved prediction
accuracy over existing methods by integrating visual and
tactile data in a unified manner. These results confirm the
framework’s reliability and scalability in estimating haptic
attributes, with potential utility in material recognition when
user ratings are unavailable or difficult to collect, assisting
researchers in assessing perceptual responses, and in robotic
perception systems where accurate surface interpretation is
essential.
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